
AD23300 Electronic Media Studio
Prof. Fabian Winkler
Fall 2013

Arduino/Processing Communication

First, we need to load Firmata on the Arduino Board. Firmata is a special Firmware for
the Arduino board which allows us to fully control the board through Processing.

In Arduino open:
File > Examples > Firmata > Standard Firmata

Load the code on the Arduino board. If successfully uploaded you won’t need to use the
Arduino software anymore!

Processing
Processing was developed in 2001 by Casey Reas and Ben Fry at MIT as a computational
sketching environment. In the meantime it has developed into a powerful software
development tool for a variety of multimedia and interactive content. More information
at: http://processing.org/

Let’s look at a the anatomy of a simple Processing sketch (code written in Processing),
open:
File > Examples > Topics > Drawing > Continuous Lines

Installing the Library for Processing/Arduino Communication

Download the Arduino library for Processing:
http://playground.arduino.cc/interfacing/processing

Unzip the library and copy the "arduino" folder into the "libraries" sub-folder of your
Processing Sketchbook. (You can find the location of your Sketchbook by opening the
Processing Preferences. If you haven't made a "libraries" sub-folder in your Sketchbook
folder, create one.)

Winkler, Arduino/Processing Communication Workshop, p.2	
	

Restart Processing, after a successful installation you should now see the library in your
libraries menu:

Now open the “arduino_input” example from File > Examples > Contributed
Libraries > Arduino (Firmata) > arduino_input.

Winkler, Arduino/Processing Communication Workshop, p.3	
	

Connect your Arduino board (with Firmata installed) and the pushbutton circuitry
attached and run your “arduino_input” Processing sketch.

This is the hardware setup for the Arduino:

The example might not work initially – check your serial port settings in the
“arduino_input” Processing sketch. On my computer, I got lucky and default serial port
“[0]” matched with my usb port (“[1]” would have worked as well) but this might be
vastly different on your computer. Check the debugging window in Processing to see all
your ports and their associated number.

pushbutton

resistor,
between 1 -10kΩ

Prevents a “floating”
input on pin 2 when
the button is not
pressed.

[0] and [1] have
valid USB serial
port addresses.

Winkler, Arduino/Processing Communication Workshop, p.4	
	

This is where you might change the port number in your code:

	
Finally, you should see a window like the one below, when pressing the button
connected to pin 2 of your board the third box from the right should appear filled with
white. You might see some other boxes also change their background color but this is
from all the other pins being “floating” pins (i.e. not tied to ground) so they are
susceptible to subtle electric charges from your skin or objects close by. IN the next
round of examples we won’t even activate those pins so we don’t have to worry about
them.

See which port
your USB serial
connection is
associated with. If
not clear go
through all ports
until it works.

Winkler, Arduino/Processing Communication Workshop, p.5	
	

Testing the Analog Sensor

Now connect the potentiometer to the Arduino pin A0, like this:

Potentiometer, you have to
solder some wires to the solder
lugs on the component to make
it connect to the Arduino board.

Winkler, Arduino/Processing Communication Workshop, p.6	
	

Then run the “arduion_input” sketch again and observe the changing size of the circle
representing this pin (again some other circles might change their size as well but we’ll
disable them later in our actual code):

OK, you are now all set to start working with Arduino and Processing!

